Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at , a moderately lensed galaxy ( ) with an intrinsic UV magnitude of . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z⊙ < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M⊙. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before.more » « lessFree, publicly-accessible full text available August 4, 2026
- 
            ABSTRACT Around 400 Myr after the big bang, the ultraviolet emission from star-forming galaxies reionized the Universe. Ionizing radiation (Lyman continuum, LyC) is absorbed by cold neutral hydrogen gas (H i) within galaxies, hindering the escape of LyC photons. Since the H i reservoir of LyC emitters has never been mapped, major uncertainties remain on how LyC photons escape galaxies and ionize the intergalactic medium. We have directly imaged the neutral gas in the nearby reionization-era analogue galaxy Haro 11 with the 21 cm line to identify the mechanism enabling ionizing radiation escape. We find that merger-driven interactions have caused a bulk offset of the neutral gas by about $$6\,$$ kpc from the centre of the galaxy, where LyC emission production sites are located. This could facilitate the escape of ionizing radiation into our line of sight. Galaxy interactions can cause both elevated LyC production and large-scale displacement of H i from the regions where these photons are produced. They could contribute to the anisotropic escape of LyC radiation from galaxies and the reionization of the Universe. We argue for a systematic assessment of the effect of environment on LyC production and escape.more » « less
- 
            Abstract Here we describe a new study of the supernova remnants (SNRs) and SNR candidates in nearby face-on spiral galaxy M83, based primarily on MUSE integral field spectroscopy. Our revised catalog of SNR candidates in M83 has 366 objects, 81 of which are reported here for the first time. Of these, 229 lie within the MUSE observation region, 160 of which have spectra with [Sii]:Hαratios exceeding 0.4, the value generally accepted as confirmation that an emission nebula is shock-heated. Combined with 51 SNR candidates outside the MUSE region with high [Sii]:Hαratios, there are 211 spectroscopically confirmed SNRs in M83, the largest number of confirmed SNRs in any external galaxy. MUSE’s combination of relatively high spectral resolution and broad wavelength coverage has allowed us to explore two other properties of SNRs that could serve as the basis of future SNR searches. Specifically, most of the objects identified as SNRs on the basis of [Sii]:Hαratios exhibit more velocity broadening and lower ratios of [Siii]:[Sii] emission than Hiiregions. A search for nebulae with the very broad emission lines expected from young, rapidly expanding remnants revealed none, except for the previously identified B12-174a. The SNRs identified in M83 are, with few exceptions, middle-aged interstellar medium (ISM) dominated ones. Smaller-diameter candidates show a larger range of velocity broadening and a larger range of gas densities than the larger-diameter objects, as expected if the SNRs expanding into denser gas brighten and then fade from view at smaller diameters than those expanding into a more tenuous ISM.more » « less
- 
            Abstract Using recently acquired Hubble Space Telescope NIR observations ( J , Pa β , and H bands) of the nearby galaxy NGC 1313, we investigate the timescales required by a young star cluster to emerge from its natal cloud. We search for extincted star clusters, potentially embedded in their natal cloud as either (1) compact sources in regions with high H α /Pa β extinctions or (2) compact H ii regions that appear as point-like sources in the Pa β emission map. The NUV–optical–NIR photometry of the candidate clusters is used to derive their ages, masses, and extinctions via a least- χ 2 spectral energy distribution broad- and narrowband fitting process. The 100 clusters in the final samples have masses in the range and moderate extinctions, E ( B − V ) ≲ 1.0 mag. Focusing on the young clusters (0–6 Myr), we derive a weak correlation between extinction and age of the clusters. Almost half of the clusters have low extinctions, E ( B − V ) < 0.25 mag, already at very young ages (≤3 Myr), suggesting that dust is quickly removed from clusters. A stronger correlation is found between the morphology of the nebular emission (compact, partial or absent, both in H α and Pa β ) and cluster age. Relative fractions of clusters associated with a specific nebular morphology are used to estimate the typical timescales for clearing the natal gas cloud, resulting in between 3 and 5 Myr, ∼1 Myr older than what was estimated from NUV–optical-based cluster studies. This difference hints at a bias for optical-only-based studies, which James Webb Space Telescope will address in the coming years.more » « less
- 
            ABSTRACT We use the angular two-point correlation function (TPCF) to investigate the hierarchical distribution of young star clusters in 12 local (3–18 Mpc) star-forming galaxies using star cluster catalogs obtained with the Hubble Space Telescope (HST) as part of the Treasury Program Legacy ExtraGalactic UV Survey. The sample spans a range of different morphological types, allowing us to infer how the physical properties of the galaxy affect the spatial distribution of the clusters. We also prepare a range of physically motivated toy models to compare with and interpret the observed features in the TPCFs. We find that, conforming to earlier studies, young clusters ($$T \lesssim 10\, \mathrm{Myr}$$) have power-law TPCFs that are characteristic of fractal distributions with a fractal dimension D2, and this scale-free nature extends out to a maximum scale lcorr beyond which the distribution becomes Poissonian. However, lcorr, and D2 vary significantly across the sample, and are correlated with a number of host galaxy physical properties, suggesting that there are physical differences in the underlying star cluster distributions. We also find that hierarchical structuring weakens with age, evidenced by flatter TPCFs for older clusters ($$T \gtrsim 10\, \mathrm{Myr}$$), that eventually converges to the residual correlation expected from a completely random large-scale radial distribution of clusters in the galaxy in $$\sim 100 \, \mathrm{Myr}$$. Our study demonstrates that the hierarchical distribution of star clusters evolves with age, and is strongly dependent on the properties of the host galaxy environment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
